
O�chain Labs ArbOS 30 Nitro
Upgrade
Security Assessment

July 24, 2024

Prepared for:

Harry Kalodner, Rachel Bousfield, Lee Bousfield, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Gustavo Grieco, Kurt Willis, and Tarun Bansal

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’s request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Project Goals 7
Project Targets 8
Project Coverage 9
Summary of Findings 14
Detailed Findings 15

1. secp256r1 precompile does not check for signature malleability 15
2. secp256r1 precompile uses a deprecated function 17
3. Incorrect implementation of integer math functions 18
4. Incorrect parameter types used for CGo calls 27
5. Making space for a very large program can result in heap error 29

A. Vulnerability Categories 31

Trail of Bits 3 Offchain Labs Security Assessment
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Gustavo Grieco, Consultant Kurt Willis, Consultant
gustavo.grieco@trailofbits.com kurt.willis@trailofbits.com

Tarun Bansal, Consultant
tarun.bansal@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

May 06, 2024 Pre-project kickoff call

May 13, 2024 Status update meeting #1

May 17, 2024 Delivery of report draft

May 17, 2024 Report readout meeting

July 24, 2024 Delivery of comprehensive report

Trail of Bits 4 Offchain Labs Security Assessment
PUBLIC

mailto:mary.obrien@trailofbits.com
mailto:gustavo.grieco@trailofbits.com
mailto:kurt.willis@trailofbits.com
mailto:kurt.willis@trailofbits.com

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of the ArbOS 30 upgrade. ArbOS
30 is an upgrade of the Arbitrum chains that enables Stylus and other features. ArbOS 30
adds support for the Stylus virtual machine, which executes WebAssembly (WASM) rather
than EVM bytecode and allows developers to write smart contracts in Rust and other
languages that can compile to WASM. During this engagement, we did not review the Stylus
code itself, but instead reviewed the merging changes related to that feature as well as
some additional features and changes in the go-ethereum side.

A team of three consultants conducted the review from May 6 to May 17, 2024, for a total
of six engineer-weeks of effort. Our testing efforts focused on issues resulting in consensus
failure for Arbitrum blocks before or after the upgrade. With full access to source code and
documentation, we performed static and dynamic testing of the target using automated
and manual processes.

Observations and Impact
During this engagement, we uncovered medium-severity findings affecting some of the
math primitives used by ArbOS (TOB-ARBOS30-003). We also found some informational
issues affecting the secp256r1 implementation, the CGo call types, and the
CacheManager contract.

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Offchain Labs take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Improve testing of ArbOS math functions. The lack of strong unit tests and
fuzzing tests on the math-related functions should be addressed to avoid future
related issues.

Trail of Bits 5 Offchain Labs Security Assessment
PUBLIC

Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 1

Low 0

Informational 4

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Cryptography 2

Data Validation 3

Trail of Bits 6 Offchain Labs Security Assessment
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the Offchain Labs ArbOS
30 upgrade. Specifically, we sought to answer the following non-exhaustive list of
questions:

● Is the ArbOS 30 upgrade safe to perform? Are there any consensus issues after the
upgrade is enabled?

● Is the ArbOS bookkeeping correct and updated when necessary? Is there any
bookkeeping from its internal state that is not properly committed or reverted?

● Is the ArbOS 30 upgrade retro-compatible with the expected behavior of previous
versions?

Trail of Bits 7 Offchain Labs Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

Nitro updates for ArbOS 30 Upgrade
Repository https://github.com/OffchainLabs/nitro

https://github.com/OffchainLabs/go-ethereum

Version https://github.com/OffchainLabs/nitro/pull/2257
https://github.com/OffchainLabs/nitro/pull/2147
https://github.com/OffchainLabs/nitro/pull/2272
https://github.com/OffchainLabs/nitro/pull/2285
https://github.com/OffchainLabs/nitro/pull/2308
https://github.com/OffchainLabs/nitro/pull/2310
https://github.com/OffchainLabs/go-ethereum/pull/316
https://github.com/OffchainLabs/go-ethereum/pull/303

Type Golang

Platform Arbitrum

Smart contracts for ArbOS 30 upgrade
Repository https://github.com/ArbitrumFoundation/governance/

https://github.com/OffchainLabs/nitro-contracts

Version https://github.com/ArbitrumFoundation/governance/pull/276
https://github.com/ArbitrumFoundation/governance/pull/{279, 296} (only

AIPNovaFeeRoutingAction)
https://github.com/OffchainLabs/nitro-contracts/pull/172
https://github.com/OffchainLabs/nitro-contracts/pull/173
https://github.com/OffchainLabs/nitro-contracts/pull/117

Type Solidity

Platform Ethereum

Trail of Bits 8 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro
https://github.com/OffchainLabs/go-ethereum
https://github.com/OffchainLabs/nitro/pull/2257
https://github.com/OffchainLabs/nitro/pull/2147
https://github.com/OffchainLabs/nitro/pull/2272
https://github.com/OffchainLabs/nitro/pull/2285
https://github.com/OffchainLabs/nitro/pull/2308
https://github.com/OffchainLabs/go-ethereum/pull/316
https://github.com/OffchainLabs/go-ethereum/pull/303
https://github.com/ArbitrumFoundation/governance/
https://github.com/OffchainLabs/nitro-contracts
https://github.com/ArbitrumFoundation/governance/pull/276
https://github.com/OffchainLabs/nitro-contracts/pull/172
https://github.com/OffchainLabs/nitro-contracts/pull/173
https://github.com/OffchainLabs/nitro-contracts/pull/117

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● General review of the ArbOS 30 upgrade: We manually reviewed the changes
made in the ArbOS 30 upgrade. This upgrade included several small features,
including the new secp256r1 precompile, more efficient usage of retryable tickets,
and a number of small fixes. For this review, we used the provided patch files and
the individual PRs; we looked for common golang flaws and upgrade issues, such as
incorrect updates to the ArbOS state, issues that enable upgrade features before
the system is actually upgraded, issues that invalidate the blocks created before the
upgrade, issues that enable denial-of-service attacks or theft of funds, and issues
that break the consensus protocol.

● Additional changes required to merge Stylus: ArbOS 30 allows users to run
WASM programs using Stylus. While we did not audit Stylus itself during this review,
we checked that the merge procedure with the current ArbOS 30 code was correct.
In particular, we reviewed how each conflict was solved, and if the modified code
has not introduced additional issues.

● Stylus smart contract changes: ArbOS 30 requires a number of small changes in
the smart contracts, including a conditional OSP for new Stylus fraud proofs and a
number of upgrade actions, including performing the ArbOS30 upgrade itself,
adjusting relevant chain parameters, and modifying the fee recipients of the Nova
chains. We reviewed each upgrade action to assess whether it performs its task
correctly, and whether it can be blocked by external users.

● The go-ethereum upgrade: The go-ethereum Offchain fork was recently modified
to implement the changes related to version v1.13.11. The go-ethereum upgrade
includes a number of changes, including gas estimation and logging changes. We
verified that these changes will not conflict with Arbitrum’s specific modifications
required for ArbOS to work properly. We also reviewed how the upgrade is enabled
to ensure that it is in sync with the ArbOS 30 upgrade.

For the ArbOS upgrade, Offchain Labs provided a list of files relevant to the state transition
function. This list was then further refined to include only those that actually had any
changes between the given commits (obtained via git diff --name-only
consensus-v20 b8a9479f77aa358d53e10e2944257a8483ff64a8). Only the changes
between ArbOS20 (consensus-v20) and ArbOS30
(b8a9479f77aa358d53e10e2944257a8483ff64a8) were reviewed in the following files in
the nitro repository:

Trail of Bits 9 Offchain Labs Security Assessment
PUBLIC

● arbos/arbosState/arbosstate.go
● arbos/arbosState/initialize.go
● arbos/block_processor.go
● arbos/l1pricing/l1PricingOldVersions.go
● arbos/l1pricing/l1pricing.go
● arbos/retryables/retryable.go
● arbos/tx_processor.go
● arbos/util/tracing.go
● arbos/util/transfer.go
● arbstate/das_reader.go
● arbstate/inbox.go
● arbutil/wait_for_l1.go
● cmd/replay/main.go
● gethhook/geth-hook.go
● precompiles/ArbGasInfo.go
● precompiles/ArbInfo.go
● precompiles/ArbOwner.go
● precompiles/precompile.go
● util/arbmath/bips.go
● util/blobs/blobs.go

Similarly, for the go-ethereum changes, Offchain Labs provided a list of relevant files. Only
the changes between the commits 1acd9c64ac5804729475ef60aa578b4ec52fa0e6 and
92b91d3fac58e7aed688f685aa8d27665f4cd47c for the following files were included in
the scope of this review:

● accounts/abi/abi.go
● accounts/abi/argument.go
● accounts/abi/bind/auth.go
● accounts/abi/bind/backend.go
● accounts/abi/bind/base.go
● accounts/abi/bind/bind.go
● accounts/abi/error.go
● accounts/abi/method.go
● accounts/abi/pack.go
● accounts/abi/reflect.go
● accounts/abi/topics.go
● accounts/keystore/passphrase.go
● accounts/keystore/watch.go
● accounts/manager.go
● common/big.go
● common/hexutil/json.go
● common/types.go
● consensus/misc/dao.go

Trail of Bits 10 Offchain Labs Security Assessment
PUBLIC

● core/arbitrum_hooks.go
● core/blockchain.go
● core/blockchain_arbitrum.go
● core/blockchain_reader.go
● core/chain_makers.go
● core/error.go
● core/evm.go
● core/genesis.go
● core/rawdb/accessors_chain.go
● core/rawdb/accessors_trie.go
● core/rawdb/ancient_scheme.go
● core/rawdb/ancient_utils.go
● core/rawdb/chain_freezer.go
● core/rawdb/chain_iterator.go
● core/rawdb/database.go
● core/rawdb/databases_64bit.go
● core/rawdb/freezer_batch.go
● core/rawdb/freezer_resettable.go
● core/rawdb/freezer_table.go
● core/rawdb/freezer_utils.go
● core/rawdb/schema.go
● core/state/database.go
● core/state/dump.go
● core/state/iterator.go
● core/state/journal.go
● core/state/snapshot/conversion.go
● core/state/snapshot/difflayer.go
● core/state/snapshot/disklayer.go
● core/state/snapshot/generate.go
● core/state/snapshot/snapshot.go
● core/state/state_object.go
● core/state/statedb.go
● core/state/statedb_arbitrum.go
● core/state/trie_prefetcher.go
● core/state_processor.go
● core/state_transition.go
● core/txindexer.go
● core/types/arbitrum_legacy_tx.go
● core/types/gen_account_rlp.go
● core/types/hashes.go
● core/types/state_account.go
● core/types/transaction.go
● core/types/transaction_marshalling.go
● core/types/tx_blob.go

Trail of Bits 11 Offchain Labs Security Assessment
PUBLIC

● core/vm/contract.go
● core/vm/contracts.go
● core/vm/contracts_arbitrum.go
● core/vm/eips.go
● core/vm/evm.go
● core/vm/instructions.go
● core/vm/interface.go
● core/vm/jump_table.go
● core/vm/opcodes.go
● core/vm/operations_acl.go
● crypto/blake2b/blake2b_f_fuzz.go
● crypto/kzg4844/kzg4844.go
● crypto/secp256r1/pubkey.go
● crypto/secp256r1/verifier.go
● ethdb/memorydb/memorydb.go
● ethdb/pebble/pebble.go
● ethdb/pebble/pebble_non64bit.go
● event/subscription.go
● log/doc.go
● log/format.go
● log/handler.go
● log/handler_glog.go
● log/logger.go
● log/root.go
● log/syslog.go
● metrics/disk_nop.go
● metrics/timer.go
● params/bootnodes.go
● params/config.go
● params/forks/forks.go
● params/protocol_params.go
● params/version.go
● rpc/json.go
● rpc/metrics.go
● rpc/service.go
● rpc/subscription.go
● rpc/types.go
● signer/core/apitypes/types.go
● trie/database.go
● trie/hasher.go
● trie/iterator.go
● trie/proof.go
● trie/stacktrie.go
● trie/sync.go

Trail of Bits 12 Offchain Labs Security Assessment
PUBLIC

● trie/triedb/hashdb/database.go
● trie/triedb/pathdb/database.go
● trie/triedb/pathdb/disklayer.go
● trie/triedb/pathdb/history.go
● trie/trienode/node.go
● trie/utils/verkle.go
● trie/verkle.go

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● We have not reviewed in detail how the ArbOS and go-ethereum codebases
evolved. We used the diff files provided by Offchain Labs to bound the scope of this
assessment.

● We have not performed a cryptographical review of the secp256r1 standard or the
cryptographic primitives used to implement it.

● We have not audited the previous versions of the code, only the changes provided.
For instance, in the case of the new release of ArbOS, we audited only the changes
from the consensus-v20 tag to the ArbOS 30 commit provided by Offchain Labs,
but we did not comprehensively audit any of these versions.

Trail of Bits 13 Offchain Labs Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 secp256r1 precompile does not check for
signature malleability

Cryptography Informational

2 secp256r1 precompile uses a deprecated function Cryptography Informational

3 Incorrect implementation of integer math
functions

Data Validation Medium

4 Incorrect parameter types used for CGo calls Data Validation Informational

5 Making space for a very large program can result
in heap error

Data Validation Informational

Trail of Bits 14 Offchain Labs Security Assessment
PUBLIC

Detailed Findings

1. secp256r1 precompile does not check for signature malleability

Severity: Informational Difficulty: Undetermined

Type: Cryptography Finding ID: TOB-ARBOS30-1

Target: crypto/secp256r1/pubkey.go

Description
The implementation of the ecdsa.Verify function from the secp256r1 package is
vulnerable to signature malleability attacks. This issue arises from the fact that the function
accepts malleable signatures as valid inputs:

// Verifies the given signature (r, s) for the given hash and public key (x, y).
func Verify(hash []byte, r, s, x, y *big.Int) bool {

// Create the public key format
publicKey := newPublicKey(x, y)

// Check if they are invalid public key coordinates
if publicKey == nil {

return false
}

// Verify the signature with the public key,
// then return true if it's valid, false otherwise
return ecdsa.Verify(publicKey, hash, r, s)

}

Figure 1.1: secp256r1’s ecdsa.Verify function accepts malleable signatures
(go-ethereum/crypto/secp256r1/verifier.go#8–21)

Signature malleability refers to the ability to modify a valid signature without invalidating it,
which can lead to potential security risks. Accepting multiple values for the components of
the signature allows an attacker to create a different valid signature for the same message,
potentially causing issues in systems that rely on unique signatures.

While the standard specifies this as the expected behavior, users need to be very aware of
this, since malleable signatures have produced many security incidents in the past.

Wrapper libraries SHOULD add a malleability check by default, with functions
wrapping the raw precompile call (exact NIST FIPS 186-5 spec, without malleability

Trail of Bits 15 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/go-ethereum/blob/0636cc447c08581274f2c6159a38ece22446db42/crypto/secp256r1/verifier.go#L8-L21

check) clearly identified. For example, P256.verifySignature and
P256.verifySignatureWithoutMalleabilityCheck. Adding the malleability check is
straightforward and costs minimal gas.

Figure 1.2: Part of the RIP-7212 standard

Recommendations
Short term, properly document this behavior to ensure that users are aware of the
implications of calling this precompile. Consider recommending a wrapper library that
performs malleability checks (e.g., something similar to the OpenZeppelin code).

Long term, review the usage of Ethereum/Rollup standards across the codebase to identify
potential misuse of them by users.

Trail of Bits 16 Offchain Labs Security Assessment
PUBLIC

https://github.com/ethereum/RIPs/blob/master/RIPS/rip-7212.md
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol#L122C1-L139

2. secp256r1 precompile uses a deprecated function

Severity: Informational Difficulty: Undetermined

Type: Cryptography Finding ID: TOB-ARBOS30-2

Target: crypto/secp256r1/pubkey.go

Description
The public key validation depends on the IsOnCurve primitive, which was recently
deprecated in golang 1.21.

The current implementation of the secp256r1 precompile verifies that the values provided
are part of the relevant elliptic curve:

func newPublicKey(x, y *big.Int) *ecdsa.PublicKey {
// Check if the given coordinates are valid
if x == nil || y == nil || !elliptic.P256().IsOnCurve(x, y) {

return nil
}
…

}

Figure 2.1: Header of the newPublicKey function

However, the latest version of the IsOnCurve function contains a deprecation note:

// IsOnCurve reports whether the given (x,y) lies on the curve.
//
// Deprecated: this is a low-level unsafe API. For ECDH, use the crypto/ecdh
// package. The NewPublicKey methods of NIST curves in crypto/ecdh accept
// the same encoding as the Unmarshal function, and perform on-curve checks.
IsOnCurve(x, y *big.Int) bool

Figure 2.2: Deprecated comment on the IsOnCurvemethod

Recommendations
Short term, document usage of a deprecated method in the precompile code and
documentation.

Long term, review the usage of deprecated API across the codebase.

Trail of Bits 17 Offchain Labs Security Assessment
PUBLIC

3. Incorrect implementation of integer math functions

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-ARBOS30-3

Target: nitro/util/arbmath/math.go

Description
Several math functions for integer values are implemented incorrectly and do not handle
overflow cases.

The AbsValue function allows overflow to occur for minimum integer values and does not
panic.

func AbsValue[T Ordered](value T) T {
if value < 0 {

return -value // never happens for unsigned types
}
return value

}

Figure 3.1: The AbsValue function implementation for generic Ordered types
(nitro/util/arbmath/math.go#77–83)

The SaturatingAdd function returns incorrect values when reaching saturation. The
positive case returns -1 instead of the expected maximum integer value. This is because
the right-shift operator >> implements a signed arithmetic shift for integer types.

In a similar manner, the negative case returns 0 instead of the minimum integer value.

// SaturatingAdd add two integers without overflow
func SaturatingAdd[T Signed](a, b T) T {

sum := a + b
if b > 0 && sum < a {

sum = ^T(0) >> 1
}
if b < 0 && sum > a {

sum = (^T(0) >> 1) + 1
}
return sum

}

Figure 3.2: The SaturatingAdd function implementation for generic Integer types
(nitro/util/arbmath/math.go#270–280)

Trail of Bits 18 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro/blob/7a440202198e724b60b79a51735c7cafb6b6901c/util/arbmath/math.go#L77-L83
https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/util/arbmath/math.go#L270-L280

The SaturatingSub function does not handle overflow in the subtrahend when it equals
the minimum negative integer value. It further compounds the errors from the
SaturatingAdd function.

// SaturatingSub subtract an int64 from another without overflow
func SaturatingSub(minuend, subtrahend int64) int64 {

return SaturatingAdd(minuend, -subtrahend)
}

Figure 3.3: The SaturatingSub function implementation for generic integer types
(nitro/util/arbmath/math.go#291–294)

The SaturatingMul function, similarly to the SaturatingAdd function, returns -1 for the
positive saturating case and 0 for the negative case.

// SaturatingMul multiply two integers without over/underflow
func SaturatingMul[T Signed](a, b T) T {

product := a * b
if b != 0 && product/b != a {

if (a > 0 && b > 0) || (a < 0 && b < 0) {
product = ^T(0) >> 1

} else {
product = (^T(0) >> 1) + 1

}
}
return product

}

Figure 3.4: The SaturatingMul function implementation for generic integer types
(nitro/util/arbmath/math.go#313–324)

The SaturatingNeg function incorrectly checks for the case when the provided value
equals -1 (^T(0)) instead of the minimum integer value. It further incorrectly returns -1
instead of the maximum value in the special case.

// Negates an int without underflow
func SaturatingNeg[T Signed](value T) T {

if value == ^T(0) {
return (^T(0)) >> 1

}
return -value

}

Figure 3.5: The SaturatingNeg function implementation for generic integer types
(nitro/util/arbmath/math.go#368–374)

The highlighted math functions are used in a few places throughout the codebase. For
example, the SaturatingAdd function is used in internal_tx.go.

Trail of Bits 19 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/util/arbmath/math.go#L291-L294
https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/util/arbmath/math.go#L313-L324
https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/util/arbmath/math.go#L368-L374

gasSpent := arbmath.SaturatingAdd(perBatchGas,
arbmath.SaturatingCast[int64](batchDataGas))

Figure 3.6: Gas spent computation during an internal transaction handling
(nitro/arbos/internal_tx.go#107)

The SaturatingMul and SaturatingSub function are both used in batch_poster.go.

surplus := arbmath.SaturatingMul(
arbmath.SaturatingSub(

l1GasPriceGauge.Snapshot().Value(),
l1GasPriceEstimateGauge.Snapshot().Value()),

int64(len(sequencerMsg)*16),
)

Figure 3.7: Surplus computation in batch poster
(nitro/arbnode/batch_poster.go#1327–1332)

The SaturatingSub function is used inside of the L2 pricing model in model.go.

backlog = arbmath.SaturatingUCast[uint64](arbmath.SaturatingSub(int64(backlog),
gas))

Figure 3.8: Backlog computation for the L2 pricing model
(nitro/arbos/l2pricing/model.go#33)

We further found that the SaturatingMul function is used in other parts of the arbmath
package, such as the NaturalToBips and the PercentToBips functions.

func NaturalToBips(natural int64) Bips {
return Bips(SaturatingMul(natural, int64(OneInBips)))

}

func PercentToBips(percentage int64) Bips {
return Bips(SaturatingMul(percentage, 100))

}

Figure 3.9: Bips conversion functions used in the L2 pricing model
(nitro/util/arbmath/bips.go#12–18)

The NaturalToBips function was also found to be used by the L2 pricing model.

exponentBips := arbmath.NaturalToBips(excess) / arbmath.Bips(inertia*speedLimit)

Figure 3.10: Exponential bips computation for the L2 pricing model
(nitro/arbos/l2pricing/model.go#48)

Exploit Scenario
The following test cases showcase the unexpected errors in the integer math functions.

Trail of Bits 20 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro/blob/b75753f31776121541b6c19e691986f8d373ebc3/arbos/internal_tx.go#L107
https://github.com/OffchainLabs/nitro/blob/19739210dc74bd69594e32dff492046d37b853e8/arbnode/batch_poster.go#L1327-L1332
https://github.com/OffchainLabs/nitro/blob/b75753f31776121541b6c19e691986f8d373ebc3/arbos/l2pricing/model.go#L33
https://github.com/OffchainLabs/nitro/blob/dd4e19280208f4896f6d328d4ed3107b73b67f41/util/arbmath/bips.go#L12-L18
https://github.com/OffchainLabs/nitro/blob/b75753f31776121541b6c19e691986f8d373ebc3/arbos/l2pricing/model.go#L48

func TestAbsValueIntOverflow(t *testing.T) {
minValue := math.MinInt64
expected := minValue

result := AbsValue(minValue)
if result == expected {

t.Errorf("AbsValue(%d) = %d; resulted in overflow", minValue, result)
}

}

func TestSaturatingAdd(t *testing.T) {
tests := []struct {

a, b, expected int64
}{

{2, 3, 5},
{-1, -2, -3},
{math.MaxInt64, 1, math.MaxInt64},
{math.MinInt64, -1, math.MinInt64},

}

for _, tt := range tests {
t.Run("", func(t *testing.T) {

sum := SaturatingAdd(int64(tt.a), int64(tt.b))
if sum != tt.expected {

t.Errorf("SaturatingAdd(%v, %v) = %v; want %v", tt.a,
tt.b, sum, tt.expected)

}
})

}
}

func TestSaturatingSub(t *testing.T) {
tests := []struct {

a, b, expected int64
}{

{5, 3, 2},
{-3, -2, -1},
{math.MinInt64, 1, math.MinInt64},
{0, math.MinInt64, math.MaxInt64},

}

for _, tt := range tests {
t.Run("", func(t *testing.T) {

sum := SaturatingSub(int64(tt.a), int64(tt.b))
if sum != tt.expected {

t.Errorf("SaturatingSub(%v, %v) = %v; want %v", tt.a,
tt.b, sum, tt.expected)

}
})

}
}

Trail of Bits 21 Offchain Labs Security Assessment
PUBLIC

func TestSaturatingMul(t *testing.T) {
tests := []struct {

a, b, expected int64
}{

{5, 3, 15},
{-3, -2, 6},
{math.MaxInt64, 2, math.MaxInt64},
{math.MinInt64, 2, math.MinInt64},

}

for _, tt := range tests {
t.Run("", func(t *testing.T) {

sum := SaturatingMul(int64(tt.a), int64(tt.b))
if sum != tt.expected {

t.Errorf("SaturatingMul(%v, %v) = %v; want %v", tt.a,
tt.b, sum, tt.expected)

}
})

}
}

func TestSaturatingNeg(t *testing.T) {
tests := []struct {

value int64
expected int64

}{
{0, 0},
{5, -5},
{-5, 5},
{math.MinInt64, math.MaxInt64},
{math.MaxInt64, math.MinInt64},

}

for _, tc := range tests {
t.Run("", func(t *testing.T) {

result := SaturatingNeg(tc.value)
if result != tc.expected {

t.Errorf("SaturatingNeg(%v) = %v: expected %v", tc.value,
result, tc.expected)

}
})

}
}

Figure 3.11: Additional arbmath test cases

Running the test cases produces the following result.

go test -timeout 30s github.com/offchainlabs/nitro/util/arbmath
--- FAIL: TestAbsValueIntOverflow (0.00s)

math_test.go:131: AbsValue(-9223372036854775808) = -9223372036854775808;
resulted in overflow

Trail of Bits 22 Offchain Labs Security Assessment
PUBLIC

--- FAIL: TestSaturatingAdd (0.00s)
--- FAIL: TestSaturatingAdd/#02 (0.00s)

math_test.go:149: SaturatingAdd(9223372036854775807, 1) = -1; want
9223372036854775807

--- FAIL: TestSaturatingAdd/#03 (0.00s)
math_test.go:149: SaturatingAdd(-9223372036854775808, -1) = 0; want

-9223372036854775808
--- FAIL: TestSaturatingSub (0.00s)

--- FAIL: TestSaturatingSub/#02 (0.00s)
math_test.go:169: SaturatingSub(-9223372036854775808, 1) = 0; want

-9223372036854775808
--- FAIL: TestSaturatingSub/#03 (0.00s)

math_test.go:169: SaturatingSub(0, -9223372036854775808) =
-9223372036854775808; want 9223372036854775807
--- FAIL: TestSaturatingMul (0.00s)

--- FAIL: TestSaturatingMul/#02 (0.00s)
math_test.go:189: SaturatingMul(9223372036854775807, 2) = -1; want

9223372036854775807
--- FAIL: TestSaturatingMul/#03 (0.00s)

math_test.go:189: SaturatingMul(-9223372036854775808, 2) = 0; want
-9223372036854775808
--- FAIL: TestSaturatingNeg (0.00s)

--- FAIL: TestSaturatingNeg/#03 (0.00s)
math_test.go:211: SaturatingNeg(-9223372036854775808) =

-9223372036854775808: expected 9223372036854775807
--- FAIL: TestSaturatingNeg/#04 (0.00s)

math_test.go:211: SaturatingNeg(9223372036854775807) = -9223372036854775807:
expected -9223372036854775808
FAIL
FAIL github.com/offchainlabs/nitro/util/arbmath 0.921s
FAIL

Figure 3.12: Test results

Recommendations
Short term, consider reverting the changes that allow for generic type implementations of
the arbmath functions. Additionally, include unit tests that cover important edge cases.

Alternatively (although we do not recommend the usage of the unsafe package),
implement the correct integer math functions using helper functions MaxSignedValue
and MinSignedValue.

// MaxSignedValue returns the maximum value for a signed integer type T
func MaxSignedValue[T Signed]() T {

return T(1<<(8*unsafe.Sizeof(T(0))-1) - 1)
}

// MinSignedValue returns the minimum value for a signed integer type T
func MinSignedValue[T Signed]() T {

return T(1 << (8*unsafe.Sizeof(T(0)) - 1))
}

Trail of Bits 23 Offchain Labs Security Assessment
PUBLIC

Figure 3.13: The MaxSignedValue and MinSignedValue helper functions

Return the maximum integer value in the case of a positive, and the minimum integer value
in the case of a negative integer overflow, for the SaturatingAdd and SaturatingMul
functions.

// SaturatingAdd adds two integers without overflow
func SaturatingAdd[T Signed](a, b T) T {

sum := a + b
if b > 0 && sum < a {

return MaxSignedValue[T]()
}
if b < 0 && sum > a {

return MinSignedValue[T]()
}
return sum

}

Figure 3.14: The corrected SaturatingAdd function

// SaturatingMul multiply two integers without over/underflow
func SaturatingMul[T Signed](a, b T) T {

product := a * b
if b != 0 && product/b != a {

if (a > 0 && b > 0) || (a < 0 && b < 0) {
product = MaxSignedValue[T]()

} else {
product = MinSignedValue[T]()

}
}
return product

}

Figure 3.15: The corrected SaturatingMul function

The SaturatingSub function should be rewritten to properly handle the case when b
equals the minimum integer value, as negating the value and reusing SaturatingAdd
would result in an overflow.

// SaturatingSub subtracts two integers without overflow
func SaturatingSub[T Signed](a, b T) T {

diff := a - b
if b < 0 && diff < a {

return MaxSignedValue[T]()
}
if b > 0 && diff > a {

return MinSignedValue[T]()
}
return diff

}

Trail of Bits 24 Offchain Labs Security Assessment
PUBLIC

Figure 3.16: The corrected SaturatingSub function

For the SaturatingNeg function, correct the value in the comparison by checking for the
minimum integer value, and return the maximum integer value.

// SaturatingNeg negates an integer without underflow
func SaturatingNeg[T Signed](value T) T {

if value == MinSignedValue[T]() {
return MaxSignedValue[T]()

}
return -value

}

Figure 3.17: The corrected SaturatingNeg function

For the AbsValue function, consider panicking in the case of an overflow, or returning an
error.

// AbsValue returns the absolute value of a number
func AbsValue[T Number](value T) T {

if value < 0 {
if value == MinSignedValue[T]() {

panic("AbsValue: overflow detected for minimum signed value")
}
return -value

}
return value

}

Figure 3.18: An AbsValue function which panics in the overflow case

Alternatively, consider implementing a SaturatingAbsValue function that clips the
output to the maximum integer value.

// SaturatingAbsValue returns the absolute value of a number
func SaturatingAbsValue[T Number](value T) T {

if value < 0 {
if value == MinSignedValue[T]() {

return MaxSignedValue[T]()
}
return -value

}
return value

}

Figure 3.19: An implementation of SaturatingAbsValue that saturates in the overflow case

Long term, implement unit tests covering the edge cases for the arbmath package. Further,
consider fuzz testing, as this will help ensure more robust testing coverage.

Trail of Bits 25 Offchain Labs Security Assessment
PUBLIC

func FuzzSaturatingAdd(f *testing.F) {
testCases := []struct {

a, b int64
}{

{2, 3},
{-1, -2},
{math.MaxInt64, 1},
{math.MinInt64, -1},

}

for _, tc := range testCases {
f.Add(tc.a, tc.b)

}

f.Fuzz(func(t *testing.T, a, b int64) {
sum := SaturatingAdd(a, b)
expected := a + b

if b > 0 && a > math.MaxInt64-b {
expected = math.MaxInt64

} else if b < 0 && a < math.MinInt64-b {
expected = math.MinInt64

}

if sum != expected {
t.Errorf("SaturatingAdd(%v, %v) = %v; want %v", a, b, sum,

expected)
}

})
}

Figure 3.20: Example fuzz tests covering the SaturatingAdd function

Trail of Bits 26 Offchain Labs Security Assessment
PUBLIC

4. Incorrect parameter types used for CGo calls

Severity: Informational Difficulty: Medium

Type: Data Validation Finding ID: TOB-ARBOS30-4

Target: nitro/wavmio/raw.go,
nitro/arbitrator/wasm-libraries/host-io/src/lib.rs

Description
Go’s CGo FFI calls contain differing and incorrect parameter type definitions compared to
the corresponding function definitions in Rust.

For certain hostio FFI calls, such as readInboxMessage and
readDelayedInboxMessage, Go encodes the offset parameter as a uint32, whereas
Rust’s type definition specifies usize for these.

//go:wasmimport wavmio readInboxMessage
func readInboxMessage(msgNum uint64, offset uint32, output unsafe.Pointer) uint32

//go:wasmimport wavmio readDelayedInboxMessage
func readDelayedInboxMessage(seqNum uint64, offset uint32, output unsafe.Pointer)
uint32

Figure 4.1: Go’s wavmio FFI calls (nitro/wavmio/raw.go#23–27)

pub unsafe extern "C" fn wavmio__readDelayedInboxMessage(
msg_num: u64,
offset: usize,
out_ptr: GuestPtr,

) -> usize {
let mut our_buf = MemoryLeaf([0u8; 32]);
let our_ptr = our_buf.as_mut_ptr();
assert_eq!(our_ptr as usize % 32, 0);

let read = wavm_read_delayed_inbox_message(msg_num, our_ptr, offset);
assert!(read <= 32);
STATIC_MEM.write_slice(out_ptr, &our_buf[..read]);
read

}

/// Retrieves the preimage of the given hash.
#[no_mangle]
pub unsafe extern "C" fn wavmio__resolveTypedPreimage(

preimage_type: u8,
hash_ptr: GuestPtr,

Trail of Bits 27 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/wavmio/raw.go#L23-L27

offset: usize,
out_ptr: GuestPtr,

) -> usize {

Figure 4.2: The corresponding exported wavmio function declarations
(nitro/arbitrator/wasm-libraries/host-io/src/lib.rs#100–122)

As the wavmio functions are required when the compilation target is WebAssembly, in this
case the usize types will resolve to uint32.

Furthermore, Go's resolveTypedPreimage function’s parameter, which defines the
pre-image type ty, is declared as uint32.

//go:wasmimport wavmio resolveTypedPreimage
func resolveTypedPreimage(ty uint32, hash unsafe.Pointer, offset uint32, output
unsafe.Pointer) uint32

Figure 4.3: The function resolveTypedPreimage’s ty parameter is declared as uint32
(nitro/wavmio/raw.go#29–30)

The corresponding function declaration on Rust’s side expects a u8 value.

pub unsafe extern "C" fn wavmio__resolveTypedPreimage(
preimage_type: u8,
hash_ptr: GuestPtr,
offset: usize,
out_ptr: GuestPtr,

) -> usize {

Figure 4.4: Rust’s wavmio__resolveTypedPreimage’s preimage_type parameter is declared
as a u8 type (nitro/arbitrator/wasm-libraries/host-io/src/lib.rs#117–122)

Recommendations
Short term, be explicit with the type declarations when making FFI calls by changing the
usize parameters to u32. Further, make sure that both sides contain the same type
declarations by automatically generating C header files using Rust’s cbindgen tool.

Long term, consider leveraging static analysis to flag incorrect usage of FFI types for the
Go/Rust interaction.

Trail of Bits 28 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/arbitrator/wasm-libraries/host-io/src/lib.rs#L100-L122
https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/wavmio/raw.go#L29-L30
https://github.com/OffchainLabs/nitro/blob/b8a9479f77aa358d53e10e2944257a8483ff64a8/arbitrator/wasm-libraries/host-io/src/lib.rs#L117-L122

5. Making space for a very large program can result in heap error

Severity: Informational Difficulty: Medium

Type: Data Validation Finding ID: TOB-ARBOS30-5

Target: CacheManager.sol

Description
If the cache is too small to hold a program, users trying to make space for it will receive an
empty heap revert.

The CacheManager contract allows users to cache or evict programs. Before caching a
program, users can call the makeSpace function to make sure there is enough space for it.

function makeSpace(uint64 size) external payable returns (uint64 space) {
if (isPaused) {

revert BidsArePaused();
}
if (size > MAX_MAKE_SPACE) {

revert MakeSpaceTooLarge(size, MAX_MAKE_SPACE);
}
_makeSpace(size);
return cacheSize - queueSize;

}

/// Evicts entries until enough space exists in the cache, reverting if payment is
insufficient.
/// Returns the bid and the index to use for insertion.
function _makeSpace(uint64 size) internal returns (uint192 bid, uint64 index) {

// discount historical bids by the number of seconds
bid = uint192(msg.value + block.timestamp * uint256(decay));
index = uint64(entries.length);

uint192 min;
uint64 limit = cacheSize;
while (queueSize + size > limit) {

(min, index) = _getBid(bids.pop());
_deleteEntry(min, index);

}
if (bid < min) {

revert BidTooSmall(bid, min);
}

}

Figure 5.1: The makeSpace function of the CacheManager contract
(nitro-contracts/src/chain/CacheManager.sol#L126-L153)

Trail of Bits 29 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/09ff1db5fee0023eef2935bd236518f338cdd09c/src/chain/CacheManager.sol#L126-L153

However, if the program is too big for the current cache size (but still less than
MAX_MAKE_SPACE), then calling makeSpace will produce a pop with an empty min heap.

Recommendations
Short term, add a check in makeSpace to verify that the program will not exceed the cache
size and return an appropriate error message.

Long term, use fuzzing testing to detect unexpected reverts.

Trail of Bits 30 Offchain Labs Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 31 Offchain Labs Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 32 Offchain Labs Security Assessment
PUBLIC

